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Introduction

In this exposé I want to give an introduction to the usage of graph theory in (Topological)
Quantum Field Theory using the example of BF theory. In particular I want to highlight
how it can provide a link between the notion of effective actions and the ideas of homotopy
transfer of algebraic structures. Effective actions arise in mathematical physics as “practi-
cal, smaller, but in some sense equivalent” models of gauge theories.
Using the example of topological BF theory I will explain a well-understood case of this
analogy, aiming to sketch generalisable ideas where possible. To complement this, I will
talk about the result of Kontsevich–Soibelman [KS01] which links homotopy transfer to
the same type of sum-over-trees formulae that can arise from effective actions as Feynman
diagrams.

The style of this exposé – in accordance with its length – will be rather casual and focus on
the bigger-picture ideas rather than the extensive technicalities at work in the background.
By injecting remarks and associated references whenever natural, it will be more a survey
than a technical paper. The paper can be read1 by people with various levels of familiarity
with the subject, as anything between a first foray into the matter and a brief sketch of a
familiar story.

The reader familiar with the idea of gauge-fixing in the BV formalism and BF theory can
completely skip Section 1 or skim it to refresh some notions. For readers with no familiarity
with the topics, Section 1 should be read and taken as a first “appetiser” only. To read
Section 2, grasping the overarching concepts is most important. For details the reader is
referred to the cited sources.

1Hopefully
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1 Gauge Fixing

1.1 The Gauge Problem

First we want to take a step back to briefly introduce the concept of gauge-fixing, partic-
ularly its incarnation in the BV formalism. Let in the following Scl : Fcl −→ R denote the
classical action functional on the space of classical fields Fcl. In its Lagrangian incarnation
it takes the form

Scl(φi) =

∫
M

Lcl(φi), (1)

where Lcl is a map from Fcl to top-forms on M . Actions can be used to describe various
quantities from topological invariants on manifolds to surface areas of certain geometric
objects and even complex dynamical systems and physical theories like gravity, electromag-
netism or the standard model of particle physics. Solutions to such problems are captured
by certain elements in Fcl that satisfy the classical master equation (CME)

{Scl, Scl} = 0. (CME)

However in most cases the usage of action functionals suffers from a simple problem: The
data used to describe a classical field theory usually far exceeds the minimal data one would
need to describe the quantities it is supposed to capture. This manifests as invariances of
the action and solutions to the (CME) under certain transformations of the fields. In suffi-
ciently nice theories these transformations can be described as the action of a (symmetry)
group. These groups are hence called the “gauge group” of a theory.

Such redundancies pose a particularly big problem if one wants to make sense of expressions
of the following type: ∫

Fcl

e
i
ℏScl . (2)

Here ℏ is some formal parameter, Scl denotes the classical action and Fcl the classical space
of fields. Such expressions are initially motivated from physics where – in quantum field
theory – one needs to calculate “weighted integrals over all possible field configurations” to
obtain the resulting dynamics on smaller scales. This should be seen as a kind of “gener-
alised expectation value of how dynamics play out”. In physically motivated scenarios the
formal parameter ℏ is the reduced Planck’s constant. As an additional problem, the space
Fcl is often infinite-dimensional and expressions like Equation (2) are simply ill-defined.

Formally one can try to make sense of such integrals using the stationary phase formula (see
e.g. [Mne17, Theorem 3.48, Theorem 4.5]). While for finite-dimensional Fcl equivalence is
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granted by a theorem, in the infinite-dimensional case one takes it as a heuristically moti-
vated definition to make sense of the a priori ill-defined expression (2). The redundancies
imply however that the Hessian of Scl is degenerate at stationary points, making even this
perturbative expansion ill-defined.

This is where the problem in “gauge problem” really arises. A particularly nice way to
approach it, is the BV(-BRST) formalism. It provides a constructive method of extending
a classical theory with extra fields, such that all redundancies are in a sense part of the
action. For comprehensive introductions to the basics of the BV formalism and enhance-
ments see [CMR14; CM20]. In particular [Mne17] gives a good chronological introduction
to the subject.

To give a rough idea, the BV formalism allows us to work on the level of individual rep-
resentants of field configurations instead of just coarse equivalence classes. This can be
summed up into an extension of the (CME) to the quantum master equation

∆e
i
ℏS = 0 ⇐⇒ 1

2
{S, S} − iℏ∆S = 0, (QME)

which a BV theory has to obey.

1.2 The BV Integral

Assume now we have a suitable BV action S satisfying the (QME). Since it contains the
redunancies as additional fields, the idea is to choose particularly “nice” representants for
them, to make the stationary phase formula for (2) well-defined. Using the redundancies
in this way is a concept found across various approaches to dealing with the gauge problem
in field theories.

Denote the space of BV fields by FBV . It is obtained as T ∗[−1]FBRST , where FBRST

should be seen as Fcl + “symmetries”. E.g. for BF theory we can write

FBV = Ω•(M ; g)[1]⊕ Ω•(M ; g∗)[dim(M)− 2] (3)
= T ∗[−1](Ω•(M ; g)[1]). (4)

As a result FBV has the structure of an odd-symplectic space with (−1)-symplectic form
ΩBV given by the canonical coordinate symplectic form.

Assume now that our space of BV fields arises from some differential graded Lie algebra h
as FBV := T ∗[−1](h[1])2. Whenever there is a split of h into subcomplexes h′ ⊕ h′′ where
h′′ is acyclic, i.e. contributes nothing to the cohomology of h, we get a corresponding split

2As is the case for BF theory, see above.
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FBV = F ′ ⊕ F ′′. Our goal is to dismiss the degrees of freedom in F ′′ since they have no
impact on the cohomology underlying our solutions to the (QME). Choosing a Lagrangian
submanifold L ⊂ F ′′ lets us do exactly that by means of the BV integral

e
i
ℏSeff =

1

N

∫
L
e

i
ℏSBV µL, (5)

where N is some normalisation factor and µL denotes a volume form on L. Seff is called
the effective action resulting from the gauge-fixing procedure and it is a function on F ′3

Terms in SBV that live only in F ′ are seen as constants, terms only in F ′′ as purely on L
and mixed terms as perturbations yielding additional terms of the effective actions. Thus
the BV integral in Equation (5) gives us a perturbative definition of Seff. Nicely enough,
this procedure guarantees that Seff satisfies the (QME).

Of course it is not clear a priori how to construct Lagrangians in FBV . Much less “useful”
Lagrangians that help aleviate the degeneracies in the stationary phase formular. We will
formulate a special class of Lagrangians in Section 2.2 when talking about effective actions
stemming from BF theory.

1.3 BF Theory in the BV Formalism

BF theory is a special type of topological field theory since it can be formulated on manifolds
M of any positive dimension, which do not need to be orientable and can have a boundary.
Its classical action functional is

SBF =

∫
M

〈
B, dA+

1

2
[A,A]g

〉
, (6)

where A ∈ Ω1(M ; g) is a connection 1-form of some principal G-bundle P such that g =
Lie(G) is some semisimple Lie algebra, B ∈ Ωn−2(M ; g∗) and ⟨−,−⟩ denotes the Killing
form pairing. The classical equations of motion – i.e. solutions to (CME) – amount to

0 = dA+
1

2
[A,A]g = FA, (7)

0 = dAB. (8)

I.e. the space of classical solution is described by flat connections A and fields B with van-
ishing covariant derivative. In low dimensions BF theory has intricate links to topological
invariants of the underlying manifold [Wit89; CCFM95; PWY17]. It also has considerable
physical relevance since it can be deformed to obtain theories of gravity [Mik06; FS12].
Gravitational theories obtained in this way are commonly used in quantisation schemes like

3One could see Seff as a result of taking a normalised expectation value over all fields in F ′′.
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Loop Quantum Gravity [RS06; DL11].

A particularly interesting feature of BF theory is that its full BV theory – taking into
account all symmetries and their redundancies – can be brought into the same form as its
classical version using superfields [CR01]:

SBV
BF =

∫
M

〈
B, dA+

1

2
[A,A]

〉
, FBV = T ∗[−1](Ω•(M ; g)[1]). (9)

Hence from now on we will always use SBF to denote the full BV BF action.

For the purpose of this article it is helpful to see SBF as a generating function for structure
constants: Consider the triple h := (Ω•(M ; g), d, [−,−]), where d is the deRham differential
and [−,−] is the Lie bracket induced by [−,−]g. The (CME) is equivalent to

〈
B, d2A

〉
+

〈
B, [A, dA] +

1

2
d[A,A]

〉
+

〈
B,

1

2
[[A,A], A]

〉
= 0. (10)

Since the terms of different powers in A have to vanish separately we get the differential
condition d2 = 0 from the linear, the Leibniz identity from the quadratic and the
Jacobi identity from the cubic terms. This tells us that the pair of operations (d, [−,−])
promotes Ω•(M ; g) to a differential graded Lie algebra. In other words we should see BF
theory in the BV formalism as the generating function for dg Lie algebra structures. More
appropriately however we should inspect the (QME) since we are working with a full BV
theory. Apart from the classical terms above it also yields the independent relation

−iℏ (Strh(d(−)) + Strh([A,−])) = 0. (11)

Since d is of degree 1, Strh(d(−)) = 0. Thus the above condition boils down to Strh([A,−]) =
0, which is the unimodularity condition for Lie algebras. Thus in the following we will
restrict to unimodular Lie algebras to guarantee that (QME) can be satisfied.
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2 Two Views on Homotopy Transfer

2.1 Classical Homotopy Transfer

In the following we will briefly state a result about the homotopy transfer of differential
graded Lie algebras. It goes back to earlier works of [GS86] and [Mer01], however we use
here the convenient version found in [KS01, p. 6.4] since it explicitly links the result to a
“sum over trees”.

First we need to set the stage. Let’s assume we have two cochain complexes. A natural
question to ask is then what data is needed to say that one complex is a subcomplex of the
other, such that it still “captures the same cohomology”. In other words, we are asking for
the correct definition of a quasi-isomorphism:

Definition 2.1 (IPK-Triples) Let (V, d) and (W,d′) be cochain complexes and let
(ı, p,K) be a triple such that:

I) ı : W −→ V and p : V −→ W are chain maps such that p ◦ ı = id.

II) K : V • −→ V •−1 is a chain homotopy between p ◦ ı and the identity, i.e.

id−ı ◦ p = d ◦K +K ◦ d. (12)

III) K2 = 0, K ◦ ı = 0, p ◦K = 0.

We call such data a contraction of V onto W and the triple (ı, p,K) an IPK-triple.

IPK-triples can be depicted diagramatically as

(V, d, [−,−]) (W,d′, [−,−])K

p

ı

The data of an IPK-triple is a slightly enhanced version of the usual notion of quasi-
isomorphisms between cochain complexes: The three additional conditions in III) essen-
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tially state that K maps into and annihilates the complex we contract onto:

... . . .

k + 1 (V \ ı(W ))k+1 ı(W )k+1

k (V \ ı(W ))k ı(W )k 0

k − 1 (V \ ı(W ))k−1 ı(W )k−1 0

... . . .

K K

K K

Assume now we are given an IPK-triple as above. Now however, the base dg vector space
(V, d) is also equipped with a compatible Lie bracket [−,−], making it a differential graded
Lie algebra. One could then wonder if the data of an IPK-triple is enough to enhance
quasi-isomorphisms on the level of cochain complexes to a bigger algebraic context. Indeed
there is a very constructive result:

Theorem 2.2 (Homotopy Transfer by Sum-over-Trees [KS01]4) Let (h, d, [−,−]) be a
differential graded Lie algebra and let (ı, p,K) be an IPK-triple contracting h onto f. Then
f can be equipped with the structure of an L∞ algebra5 (f, {li}) by defining the totally
antisymmetric maps

l1 := df = p ◦ d ◦ ı, (13)
l2 := p ◦ [−,−] ◦ (ı⊗ ı), (14)

ln :=
∑

T∈obTree(n)

l(T ), n ≥ 3. (15)

The sum for the li maps goes over oriented, planar, binary rooted trees T with n leaves.
Their constituent maps l(T ) are formed as follows: Decorate all leaves of T by ı and all
internal vertices by [−,−]. Then decorate all internal edges by K and the root of the tree
by p. Concatenation of these operations from the leaves to the root yields l(T ).

The following illustration shows two examples for operations l(T ) contributing to l4:
4Actually [KS01, p. 6.4] is concerned with A∞ algebras and states a more general version. We state here

the L∞ version, restricted to dgLA’s.
5The definition of an L∞ algebra can be found e.g. in [Mne08], however the relevant structure equations

are also found down below, named (L∞-relations).
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Figure 1: Illustration of two graphs contributing to l4. Leaves are denoted by bullets, the root
vertex by a hollow bullet. Internal edges are decorated with an arrow to indicate the orientation.

Really we should see Theorem 2.2 as a result about L∞ algebras (or A∞, see [KS01]).
Since every dgLA is in particular an L∞ algebra with vanishing operations for n ≥ 3, The-
orem 2.2 tells us that the quasi-isomorphism on the level of cochain complexes lifts to a
quasi-isomorphism of specific L∞ algebras over the same bases.

The occurence of binary rooted trees is due to the fact that we only have operations with
either 1 or 2 inputs in a dgLa. One should see the “sum over trees” defining the operations
ln in the subcomplex as a way of including every possible way to combine a given number of
inputs using the operations. We will rediscover such combinations when looking at effective
BF theory in the following section.

2.2 Effective BF Theory

In Section 1.2 we left off in a rather awkward situation. Having talked about the gauge
problem and the BV integral, we had to concede that – at this point – there were no clear-
cut Lagrangians that provide nice examples of gauge-fixing and thus effective actions.

So let us go back to spaces of BV fields of the form FBV := T ∗[−1](h[1]), for some (uni-
modular) dg Lie algebra h. Let us further assume that h is nilpotent, i.e. h has vanishing
Killing form6. Luckily a particularly nice class of Lagrangians can be constructed from the

6This leads to drastic simplifications of the terms we need to consider for Seff. In particular we then
recover exactly the homotopy transfer result of Theorem 2.2 and not some stronger result on unimodular
L∞ algebras. A good source showing how these more general structures are recovered from BF theory for
more general dg Lie algebras is [Mne08, sec. 4].
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data of an IPK-triple (ı, p,K) contracting h onto f. Using the triple we split the space of
BV fields as

FBV := T ∗[−1](h[1]) = F ′︸︷︷︸
From f

⊕ F ′′︸︷︷︸
From complement

. (16)

K then uniquely defines a Lagrangian submanifold of F ′′ via

LK := ker(K)[1]⊕ im(K∗)[−2]. (17)

For a given action SBV formulated on FBV we can now make sense of the effective action.
Its perturbative definition as a formal power series in ℏ is given by the BV integral (5)

e
i
ℏSeff =

1

N

∫
LK

e
i
ℏSBV µLK

. (18)

While one could use the stationary phase formula to calculate the explicit form of Seff by
hand, we want to go a more intuitive route here.

In the following, we work with the BV BF action SBF which can be seen as a generating
function for the structure equations of a differential graded Lie algebra (see Section 1.3).
From the splitting of the space of fields into FBV = F ′ ⊕F ′′ we obtain a splitting of fields

A = A′ +A′′, B = B′ +B′′. (19)

The effective action is obtained by integration over LK ⊂ F ′′. For the purpose of integration
fields A′, B′ are constants and fields A′′, B′′ are integrated over. In the following we decorate
constant fields by external vertices and non-constant fields by half-edges. This yields the
following diagramatic building blocks, called Feynman rules:

SBF =

∫
M

〈
B′, dA′〉 =⇒ ▶ (20)

+

〈
B′,

1

2
[A′, A′]

〉
=⇒ (21)

+
〈
B′′, dA′′〉 =⇒ ▶ (22)

+

〈
B′′,

1

2
[A′′, A′′]

〉
=⇒ (23)

+

〈
B′,

1

2
[A′′, A′′]

〉
=⇒ (24)

+
〈
B′′, [A′, A′′]

〉
=⇒ (25)

+
〈
B′, [A′, A′′]

〉
=⇒ (26)

+

〈
B′′,

1

2
[A′, A′]

〉
=⇒ (27)
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The graphs above are oriented and read left-to-right. Incoming vertices/half-edges are dec-
orated by ı(A′), A′′. The fields ı(B′), B′′ decorate outgoing vertices/half-edges respectively.
The only exceptions are the building blocks B′ ▶ A′ and B′′ ▶ A′′ which send a B′ ver-
tex to a A′ vertex and a B′′ half-edge to a A′′ half-edge respectively. The term B′′ ▶ A′′

is enabling us to construct more complex graphs from the above building blocks in the first
place.

The effective action is now obtained from the Feynman rules as follows7:

i) Decorate the all-edge building block B′′ ▶ A′′ with the chain homotopy K.

ii) Decorate incoming vertices by ı(A′) and half-edges by A′′.

iii) Decorate outgoing vertices by ⟨B′, p(−)⟩ and half-edges by B′′.

iv) Decorate internal vertices with the Lie bracket [−,−].

v) Build any oriented graph by fitting the building blocks at equally decorated half-edges.

Naturally the resulting graphs should contribute to Seff only up to automorphism. Denoting
the above decoration rules by Φ this leads to the following effective action:

Seff =
∑
n≥1

∑
Γ∈obTree(n)

1

|Aut(Γ)|
Φ(Γ) (28)

=
〈
B′, d′A′〉+〈

B′,
1

2
p
(
[ı(A′), ı(A′)]

)〉
+

1

2

〈
B′, p

(
[K[ı(A′), ı(A′)], ı(A′)]

)〉
(29)

+
1

2

〈
B′, p

(
[K[K[ı(A′), ı(A′)], ı(A′)], ı(A′)]

)〉
(30)

+
1

8

〈
B′, p

(
[K[ı(A′), ı(A′)],K[ı(A′), ı(A′)]]

)〉
+ . . . (31)

Maybe to no surprise, there will be no pictorial representations of these graphs, because
we already have them: The reader will certainly agree that the form of the terms in the
effective action and the graph-induced operations in Figure 1 is suspiciously similar. We
will see just how deep this similarity goes in the next and last section.

2.3 The Link

As noted above, the terms in the effective action look similar to the ones we found in the
sum-over-trees formula from Theorem 2.2 depicted in Figure 1. Looking back this might

7Note that we slightly abuse notation here to denote the fields of Seff by primed fields just as we did for
F ′ ⊂ FBV . This serves to further strengthen the idea of a quasi-isomorphic subspace and helps to support
the parallel to the Kontsevich–Soibelman result on L∞ algebras.
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not even come as a surprise. After all we can read the BF action as a generating function
for (unimodular) dg Lie algebras, which are exactly the subject of the homotopy transfer
described in Section 2.1. We even used the exact same data – an IPK-triple – for homotopy
transfer and to obtain an effective action of BF theory. Spinning this further, we might
expect to find the same relations li from Theorem 2.2 hidden in the effective action. Indeed
we can immediately write

Seff(A
′, B′) =

∑
n≥1

∑
Γ∈obTree(n)

1

|Aut(Γ)|
Φ(Γ) =

∑
n≥1

∫
M

1

n!

〈
B′, ln(A

′, . . . , A′︸ ︷︷ ︸
n-times

)
〉
. (32)

All that is left is checking if Seff is indeed a generator for the structure of an L∞ algebra.
Usual BF theory recovers the relations of a (unimodular) dg Lie algebra by means of the
(QME). Since the BV integral ensures that Seff also satisfies the QME, we might expect
the same to happen here. Indeed the (QME) yields for all n ≥ 1:∑

r+s=n

1

r!s!
lr+1(A

′, . . . , A′, ls(A
′, . . . , A′)) = 0, (L∞-relations)

1

n!
Strh′(ln+1(A

′, . . . , A′,−)) = 0. (Higher unimodularity relations)

Thus we should see Seff as a generating function for the structure of an L∞ algebra. The
additional higher unimodularity relations are due to the fact that we started off with a
unimodular dg Lie algebra to ensure that (QME) is satisfied.

Summing up the results of this exposé we can draw the following (commutative) diagram
between the sum-over-trees result by Kontsevich–Soibelman Theorem 2.2 and the effective
action of BF theory obtained from an IPK-triple described in Section 2.2:

uni.nil. (h = h′ ⊕ h′′, d, [−,−]) (FBV = F ′ ⊕F ′′, SBV )

(h′, {li}i≥1) (F ′, Seff)

Construct action:
Section 1.3

(ı, p,K) =⇒ Homotopy transfer:
Theorem 2.2

(ı, p,K) =⇒ Feynman diagrams:
Section 2.2

Recover relations:
(QME)

12



References

[CCFM95] A. S. Cattaneo, P. Cotta-Ramusino, J. Fröhlich, and M. Martellini. “Topolog-
ical BF theories in 3 and 4 dimensions”. In: Journal of Mathematical Physics
36.11 (Nov. 1995), pp. 6137–6160.

[CMR14] A. S. Cattaneo, P. Mnev, and N. Reshetikhin. “Classical BV Theories on Man-
ifolds with Boundary”. In: Communications in Mathematical Physics 332.2
(2014), pp. 535–603.

[CM20] A. S. Cattaneo and N. Moshayedi. “Introduction to the BV-BFV formalism”.
In: Reviews in Mathematical Physics 32.09 (2020), p. 2030006.

[CR01] A. S. Cattaneo and C. A. Rossi. “Higher-Dimensional BF Theories in the
Batalin-Vilkovisky Formalism: The BV Action and Generalized Wilson Loops”.
In: Communications in Mathematical Physics 221.3 (Aug. 2001), pp. 591–657.

[DL11] M. Dupuis and E. R. Livine. “Revisiting the simplicity constraints and coherent
intertwiners”. In: Classical and Quantum Gravity 28.8 (2011), p. 085001.

[FS12] L. Freidel and S. Speziale. “On the Relations between Gravity and BF Theo-
ries”. In: Symmetry, Integrability and Geometry: Methods and Applications 32
(8 2012).

[GS86] V. Gugenheim and J. Stasheff. “On perturbations and A∞-structures”. In:
Bulletin de la Société Mathématique de Belgique. Série A 38 (Jan. 1986).

[KS01] M. Kontsevich and Y. Soibelman. Homological mirror symmetry and torus
fibrations. 2001. arXiv: math/0011041 [math.SG].

[Mer01] S. A. Merkulov. Strongly homotopy algebras of a Kähler manifold. 2001. arXiv:
math/9809172 [math.AG].

[Mik06] A. Mikovic. “Quantum Gravity as a Broken Symmetry Phase of a BF Theory”.
In: Symmetry, Integrability and Geometry: Methods and Applications 86 (2
2006).

[Mne08] P. Mnev. Discrete BF theory. 2008. arXiv: 0809.1160 [hep-th].

[Mne17] P. Mnev. Lectures on Batalin-Vilkovisky formalism and its applications in topo-
logical quantum field theory. 2017.

[PWY17] P. Putrov, J. Wang, and S.-T. Yau. “Braiding statistics and link invariants of
bosonic/fermionic topological quantum matter in 2+1 and 3+1 dimensions”.
In: Annals of Physics 384 (Sept. 2017), pp. 254–287.

[RS06] C. Rovelli and S. Speziale. “On the expansion of a quantum field theory around
a topological sector”. In: General Relativity and Gravitation 39.2 (2006), pp. 167–
178.

13

https://arxiv.org/abs/math/0011041
https://arxiv.org/abs/math/9809172
https://arxiv.org/abs/0809.1160


[Wit89] E. Witten. “Quantum field theory and the Jones polynomial”. In: Communi-
cations in Mathematical Physics 121.3 (1989), pp. 351–399.

14


	Introduction
	Gauge Fixing
	The Gauge Problem
	The BV Integral
	BF Theory in the BV Formalism

	Two Views on Homotopy Transfer
	Classical Homotopy Transfer
	Effective BF Theory
	The Link

	References

